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Three models of a vortex tube (isentropic, isothermal, and iso-
choric) are considered as optical inhomogeneities, Expressions
relating the index of refraction to the coordinate are obtained.
The possibility of obtaining Schlieren pictures of such flows is
discussed,

In experimental work involving vortex flow it is
sometimes possible to use shadow or interference
methods, by means of which one can measure the
distribution of the index of refraction in the flow
field and use that distribution to calculate the dis-
tributions of other variables [1].

A vortex is associated with a pressure change,
which is a function of the particle velocity [2]. The
pressure change is accompanied by a change of
density, and the latter is uniquely related to the in-
dex of refraction. Consequently, a vortex is assoc-
iated with a field of varying index of refraction and
can, in principle, produce a shadow or interference
image.

Under different conditions there appear vortices
of different types, depending on the thermodynamic
process which takes place. In this work we shall
consider three models of a vortex tube: isentropic,
isothermal, and isochoric.

Consider a vertical vortex tube in an ideal fluid,
with a core of radius r; inside which the fluid is in
solid-body rotation

v=ar. (1)

The core induces in the surrounding fluid a flow
with velocity

v=@rr. 2)

Introducing the dimensionless radius T = r/ry and
dimensionless velocity v = v/wr, we can rewrite
(1) and (2) in the form

for < ry, 3)

<
~]

U=

\,]._

for r>ry, 4)

which clearly shows the dependence of vV on ¥.

Inside the core, where the flow is rotational, the
pressure and the density are related to the velocity
by Euler's equation of motion

L L )
Y

Outside the core, where the flow is potential, we can
use Bernoulli's equation

(6)
< + S . _ comnst.
2 P

Introducing the dimensionless pressure D = p/Pw
and the dimensionless density p = p/p., and using
(1)—(4), we reduce Euler's and Bernoulli's equations
to the form

— 1 ip
kv2-— —_— _c_i_p = const, (7)
% Y
ko -+ LSdTp = const. 8)
*® P

In both cases
= 0?2202, 22 =%Pofpe.

We shall now consider the three models of vortex
flow assuming that the above velocity field exists
in all three cases, and shall calculate the pressure,
density, and temperature fields.

Consider, for example, an isentropic vortex. Us~
ing the dimensionless variables introduced above, we
represent the Poisson equation

pIpe = (p/pa)

in the dimensionless form
p=p . 9)
Substituting (9) in (7) and (8), we obtain

1 _x—1

B p = const (10)

K —

for r = ry, and
1 -
kv +- ——p = const (11)
%—1

for r = ry. The value of the constant in (10) is deter-
mined by the boundary conditions at the core boun-

dary @ =1, 5= Bo)s

x—1
Po - (12)

To determine the constant in (11), we use the con-
ditions at infinity, Vv = 1/T = 0, p = 1. This yields

s L I (13)

Equation (13) represents the relation between the
dimensionless density and dimensionless velocity
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The Variation of p, p, and T with T for Various Vortex Models

Inside the core (p==r)

Outside the core (v=1/r)

Isentropic vortex

T=
p

Teldbx—1)(F —2

k=1 —pWeh
=l Ea—1){F =P/

= [ — k(= 1) WO
=[1—k (e —1)/r P/CD
T=1—kx—1)7

Isothermal vortex

F=explk[r —2)]
p=explhn (s ~2))

-_— ~2
o= exp(—kx/r)

_ -2
P=exp(—kwir)

T=1 T
Isachoric vortex
7 =1 c=1
F=l14 ket —2) P=1— ko
T=l4ke@ —2 T=l—kur

(or coordinate) outside the vortex core. At the core
boundary equation (13) becomes

T
! = I — k.

%—1

%1 °
Using this expression, we can eliminate the term
with B from (12), and thus obtain a relation between
the dimensionless density and the dimensionless
velocity (or coordinate) inside the vortex core:

S ek (e— 1) (T —2).

In an isentropic process the pressure and the
temperature are related as

PIpe = (TIT,3/" 7",

or, in dimensionless form,

p=T . (14)

Taking account of this relation and of equation (9),
we can obtain the distribution of the dimensionless
pressure or temperature as a function ot V or T.

In the case of the isothermal or isochoric vortices,
instead of the Poisson equation we use the Clapeyron
equation

p=pRT,

or, in dimensionless form,

In the isothermal case T = 1 and

p=0p, (15)

whereas in the isochoric case p= 1 and

p=T. (16)

Proceeding as before, we can use (15) or (16) to
derive all the necessary relations from (7), (8). The

results are collected in the table, together with
the results for the isentropic vortex.

Now, using the expressions for the density as a
function of the coordinate, one can easily derive the
expression for the index of refraction as a function
of the coordinate. The connecting relation is the Glad-
stone-Dale equation [3]

plpe = (n— 1)/{ns —1).

Denoting the right side by fi, we rewrite this equation
in the form

="

Now it is clear that the variation of the quantity
(n~ 1)/(n, — 1) is exactly the same as that of the
dimensionless density, i.e., in the isochoric case n
is constant everywhere, in the isentropic case it is

HA4kee—1) =217 for r<l,

- 1/(=—=h -
= [I~k(x—l)—l;2—] for r>1
r

a7

and in the isothermal case it is

2 —
exp [kx(r—2)) for r<1,

s
I

exp [—ku—}?] for r» 1
r

The index of refraction reaches its minimum value
at the center of the vortex. Denoting this value by
fic @ = fi, at ¥ = 0), we find in the isentropic case

g ==[1—2k (x— 1)}, (18)
and in the isothermal case
ne = exp (— 2k x). (19)

Thus, 1 varies between 1 and the value given by (18)
or (19).
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Clearly, an optical instrument can "see" such a
two-dimensijonal vortex only if the difference 1 — n
is sufficiently large, i.e., larger than the sensitivity
threshold of the instrument. In the isentropic case

—ne=1—[1—2(x — 1)}"" (20)
and in the isothermal case
1 =g =1 —exp (— 2k ). (21)

From (20) and (21) it is clear that these differ-
ences are determined by the values of ® and k =
= wlr}/2nRT», Consequently, we can construct graphs
of 1 — f; as a function of #, Tw, wry. Clearly, the
difference 1 — Tic depends on % only in the isentropic
case. This dependence is shown in Fig. 1a.
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Fig. 1. 1 — 0, as a function of (a) ®, b) T, (c) wry.
1) isentropic vortex; 2) isothermal vortex..
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It appears from the graphs in Fig. 1 (these were
constructed for the case a = 342.4 m/sec, n= 1.4,
wry = 0.5a) that it is easier to obtain a shadow or
interference image of the vortex in the case of a
cold gas with low ratio of specific heats and high
velocity at the core boundary. Also, an isothermal
vortex will be easier to visualize than an isentropic
vortex.

The above formulas allow us to explore the pos-~
sibility of using optical methods to visualize vortex
flows under various experimental conditions.

Assume, for example, that we observe a section
of a horizontal rectilinear isentropic vortex tube,
bounded by the two normal sections A and B. Let
the origin of the coordinate system lie in A, and let
the z axis coincide with the tube axis, which is hor-
izontal. We throw a parallel beam of light in the 2
direction.

The section under consideration constitutes an
optical inhomogeneity with a cylindrical field of the
index of refraction. The values n, dn/dx, and dn/dy
are constant along straight lines parallel to the 2
axis [1]. The theory shows that in this case the de-
flections €y and &y of the light beam in the x and y
directions, respectively, are given by

oy _ 1 o
0z Nw Ox
de, 1 on
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In our case
on on x on

oy
o

and, since 8n/8r, x/r, and y/r are independent of z,
we have

1 on x l_‘?’iL
ne Or r ne Or r

o=y B =Bz 0n @2)

where Az is the distance between the sections A and
B. This deflection increases with increasing Az and
an/or.

Using (17), we have for the case of the isentropic
vortex

on _
=
= 2R Z D 1y (P — ) o T
o
and
on B
or
—_ (2=x}/(x—1) —
=Mf_3—”{l—k<u—1)%] for T 1.
Tor r

At the core center, as well as at infinity, 8n/8r = 0.
At the core boundary (T = 1) the value of dn/8r is,
in both cases,

(6;1) = 2ke~1) [1 —k(x — D)2—v/e=n, (23)
ar /e To

It can be easily seen that (23) represents the maxi-
mum value of 8n/8r. Substituting this in (22), we ob-
tain the maximum value of the radial deflection of
the beam

o = 2k(ne—1)A2 (1 —k(x— 1)je=20=1),

foNe

For ne = 1.000272, wry = 0.5a4%, w = 1000 cycles, a =
= 342 m/Bec and Az = 0, 01 m we obtain

g, = 3.5.107* rad,

which is not too far from the sensitivity threshold

of a well-adjusted "IAB" instrument. The longer the
section of the vortex tube, the easier it would be to
observe the vortex by optical methods. However, the
basic factor which governs the variation of the index
of refraction in the vortex, is the quantity wr,. When
this quantity is too small as compared with the speed
of sound, the instrument will be unable to register
the flow. Therefore, the use of optical methods for
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the measurement of vortices would make sense only
in high-speed gas flows.

NOTATION

a—-speed of sound; n—index of refraction; p—~pressure;
r—radius; T—absolute temperature; v—linear velocity;
g—angular deflection of the beam; x—adiabatic expon-
ent; p—density; w—angular velocity; ¥, D etc.—dimen-
sionless parameters; vy, py~values at the core boun-
boundary; p., f. etc.—stagnation values; n,—index
of refraction at center of vortex.
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